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Abstract

I estimate aggregate and industry-specific elasticities of scale and markups
for the U.S. economy over the period from 1980 to 2019 using data on publicly
traded companies. I apply Olley-Pakes and Ackerberg-Caves-Frazer estimation
methods and find that the aggregate elasticity of scale for the U.S. economy is
1.1 and has been rising. The elasticity of scale in turn serves as an input for
calculating industry markups. Increasing returns to scale help explain observed
increases in markups over the last decades for broad sectors of the economy. My
estimate of 1.2 for the aggregate markup is significantly lower than the estimate
of 1.6 found in recent literature. The large disparity in markup estimates stems
from differences in the treatment of fixed and variable costs and the method-
ological approach to the calculation of markups.
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1 Introduction

Theorizing about increasing returns to scale has a rich history among economists,
from Smith (1776) who celebrated the division of labor, to Young (1928) and Romer
(1986), who brought to light the scalability of knowledge, to Verdoorn (1949) and
Kaldor (1978, 1981), who formulated the Kaldor-Verdoorn law, and to Krugman
(1979, 1991), who applied the theory of increasing returns to international trade and

*I thank Garett Jones, Thomas Stratmann, Nathan Shanks, and the anonymous reviewers for their
helpful comments and suggestions.
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geography. Yet, when it comes to explaining widely acknowledged phenomena of
the last decades: rising industry concentration (Autor et al., 2020; Grullon et al.,
2019), decreasing share of labor in total output (Gutiérrez and Piton, 2020; Karabar-
bounis and Neiman, 2014), and declining business dynamism (Decker et al., 2014;
Akcigit and Ates, 2021), economists revert back to the assumptions of constant or
diminishing returns prevalent in the neoclassical economic theory.

In a seminal paper, Autor et al. (2020) provide a theoretical explanation for ris-
ing industry concentration while assuming production technology with constant re-
turns to scale. Autor et al. (2020) show that under constant returns, an increase in
consumer price sensitivity is necessary to generate a tendency for big firms to keep
growing. The heterogeneity in total factor productivity between firms ensures that
more productive firms are able to charge lower prices and capture a bigger mar-
ket share. Increasing returns to scale, on the other hand, would generate similar
outcomes of industry concentration and the rise of large firms without requiring a
change in consumer preferences.

Increasing returns to scale can also generate the reduction of labor share in total
output, if increasing returns are driven by capital due to advancements in automa-
tion and computer technologies, for example. Karabarbounis and Neiman (2014)
explain the reduction in the share of labor in total output by an exogenous decline in
the relative price of investment goods, which compels firms to substitute away from
labor and toward capital. This theory requires the elasticity of substitution between
capital and labor to be greater than one, which does not find much support in the
literature (Lawrence, 2015; Oberfield and Raval, 2021).

Economists have also been concerned with rising industry markups. De Loecker
et al. (2020) argue that markups are the cause of the rise in the number of large firms
and the drop in labor share. This argument leaves open the question of what creates
markups in the first place. The alternative explanation I advance in the present re-
search reverses the markups-to-concentration causality. I argue that the technology
of recent decades, such as automation and information technology, allows firms to
experience increasing returns to scale, which in turn gives rise to large firms and
industry concentration. Large firms incur lower marginal costs causing increased
markups.

Despite arguments that increasing returns to scale may bring about industry con-
centration, market power, a decline in business dynamism and the labor share of
output, the frequent reason increasing returns to scale are dismissed as an explana-
tion for these phenomena is because empirical estimation attempts have found the
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elasticity of scale to be close to one. Ackerberg et al. (2015), Antweiler and Trefler
(2002), Pavcnik (2002) find it to be slightly above one, Fernandes (2007) and Demirer
(2020) find it to be either slightly below or slightly above one depending on the in-
dustry or model specification, and few studies find it below one (De Roux et al.,
2021). The absence of consensus among these estimates and the fact that the esti-
mates are frequently based on select industries in a small group of countries give
economists little reason to deviate from the assumption of constant returns to scale.
But where should we draw the line between close enough to one and far enough
from one to distinguish between constant returns and increasing returns to scale?
Basu and Fernald (1997) discuss the plausibility of even a small deviation from one
having a large impact on industry structure.

The main purpose of this paper is to contribute a new attempt at estimating the
elasticity of scale. I estimate industry-level and aggregate elasticities of scale in the
U.S. over the period from 1980 to 2019. I apply the estimation methods of Olley
and Pakes (1996) and Ackerberg et al. (2015) to publicly traded companies and find
that the aggregate elasticity of scale for the U.S. economy is above one and has been
growing over the last four decades, from 1.02 to 1.10. My work differs from many
previous attempts at estimating scale elasticities in that it purports to estimate them
for the U.S. economy in the aggregate as opposed to a limited number of industries.
De Loecker et al. (2020) and Traina (2018) are two recent papers that use Compustat
data to estimate industry-level production functions for the U.S. economy, and my
choice of data and approach come closest to theirs.

My contribution to the literature on the estimation of aggregate scale elasticities
is twofold. First, I make my estimation approach explicit. Although De Loecker
et al. (2020) use input-output elasticity estimates, explaining how the estimates are
arrived at is not the objective pursued by De Loecker et al. (2020). Second, I esti-
mate output elasticities for all 2-digit NAICS industries excluding only the finance
sector. My econometric approach allows me to estimate the changes in the elasticity
of scale over time even for industries with a relatively low number of firms. The
data-intensive 2-stage estimation approaches of Olley and Pakes (1996) (henceforth
“OP”) and Ackerberg et al. (2015) (henceforth “ACF”) render industry-year-specific
estimation infeasible for smaller industries. To solve this problem, I aggregate the
data into five-year rolling periods and generate industry-period-specific estimates.

The second objective of this paper is to derive markups using the estimated scale
elasticities. De Loecker et al. (2020) argue that the aggregate markups of U.S. firms
rose from 1.2 to 1.6 from 1980 to 2016. When the working version of this paper
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appeared in print, it sparked responses by Syverson (2019), Basu (2019) and Berry
et al. (2019) and separate research projects by Hall (2018) and Traina (2018) among
others. Syverson (2019) and Basu (2019) see an inconsistency in De Loecker et al.
(2020) calculations. Although markups and elasticity of scale are not directly ob-
served, profit share of revenues is observable. With a simple algebraic relationship
connecting these measures, high markup increases would have to be accompanied
by extremely high profit margins, which are not supported by empirical evidence.
Traina (2018) addresses this “paradox” by challenging the use of Cost of Goods Sold
(COGS) as a measure of a firm’s variable costs. Instead of using just COGS, Traina
also includes Selling, General and Administrative expenses (SG&A) and arrives at
markups in the range of 1.1 and 1.2. Hall (2018) uses time-series analysis with instru-
mental variables to estimate markups based on the Solow’s 1957 method for finding
the growth rate of technology. Hall’s estimation shows growing markups but also
markedly lower than in De Loecker et al. (2020).

Despite strong arguments disputing De Loecker et al.’s calculations, many ar-
ticles (Autor et al., 2020; Blanchard, 2019; Gutiérrez and Philippon, 2017) continue
to cite the authors’ results as accepted baseline for further analysis and policy rec-
ommendations. This paper contributes to the literature disputing claims of high
markups. I take Traina’s adjustment one step further and include capital into the
markup derivation. This approach is justified by two arguments. The first argument
is the disappearing distinction between capital and labor when it comes to their fixed
vs. variable status as well as the size of their adjustment costs. The second is the
longer-term view I take by using the five-year horizon in the data that allows me
to use the markup formula that includes total revenue and total cost, which Basu
(2019) and Syverson (2019) use to question the validity of De Loecker et al.’s results.
When I use total costs including COGS, SG&A and capital, I arrive at lower markup
estimates.

The paper proceeds as follows. Section 2 talks about the data. In section 3, I ex-
plain the econometric procedures used for estimating the elasticities of scale. Section
4 shows the estimation results. Section 5 covers the theoretical model for markup es-
timation. In section 6, I show the markup derivation results. Finally, section 7 briefly
discusses the macroeconomic implications of the findings and concludes.
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2 Data

I use Compustat Fundamentals Annual database as my primary data source. The
data set includes financial information on publicly traded companies in the U.S.
from 1950 to 2020 (the data was downloaded on 9/24/2021). I exclude firms that
do not report an industry code. I also exclude records where a firm’s ratio of oper-
ating income before depreciation to sales is in the bottom or top 1% of all the firms
in that year. I delineate industries using 2-digit NAICS industry codes. I exclude the
year 2020 because of economic distortions generated by COVID-19. Although Com-
pustat goes back to 1950, sufficiently detailed industry-level information appears to
be available since around the 1980s. Up until the 1980s, certain industries are in
nascent stages and are represented by only a few firms, which makes them unusable
for 2-stage regressions with multiple controls required by the OP and ACF estima-
tion methods, as will be discussed in detail in section 3. Figure 1 shows how many
firms are in Compustat for each industry by year from 1960 to 2020. Some industries,
such as arts, entertainment, and recreation (NAICS code 71) or agriculture, forestry,
fishing and hunting (NAICS code 11) have a small number of firms in the earlier
decades. For example, before 1970, there are fewer than 5 firms in the educational
services industry (NAICS code 61) and fewer than 10 firms in warehousing (NAICS
code 49). Estimating industry- and year-specific production functions is not feasible
for such small sample sizes.

The accounting variables of interest are firm-level sales, COGS, SG&A, and prop-
erty plant and equipment (PPE). It bears noting that unlike SG&A in firms’ finan-
cial statements, SG&A in Compustat excludes depreciation. In 31% of observations,
SG&A is missing. However, another variable available in Compustat, operating in-
come before depreciation, can be used to impute SG&A by subtracting COGS and
operating income before depreciation from sales. This calculation performed on
the observations with all the data points present reveals that imputed SG&A and
Compustat-provided SG&A are within 0.01% of each other in 98.7% of the cases.
This test provides sufficient endorsement to the imputation of missing SG&A, and
the imputation recovers half of the missing values.

To calculate user cost of capital, I use rt = it − πt + δt, where it is the nominal
interest rate, πt is the inflation rate and δt is depreciation plus risk premium. I use
the Federal Funds rate for it and the FRED reported inflation rate for πt, and I follow
De Loecker et al. (2020) in using constant 12% for δt.

The data analysis revealed that firms with 2-digit NAICS code 52 belonging to
the finance and insurance industry differ significantly from the rest of the firms in
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the data set. Specifically, their PPE is frequently not recorded in Compustat. This
occurs even if the annual statements filed with the SEC contain information on PPE.
PPE is missing in 21% of all observations, and 70% of those come from the finance
and insurance industry. Within the finance and insurance industry, 74% of the obser-
vations are missing PPE. This absence of PPE in Compustat could lead to bias in the
results because the observations with missing data simply get skipped by most sta-
tistical software, which would likely violate the assumption of random sampling. In
addition, the financial industry revenue figures in Compustat include both interest
and non-interest income, while their COGS include only interest expense.

Another factor that makes the finance industry unique is that the financial firms’
operating margins appear to be much higher than in other industries as they record
many of their expenses as extraordinary items. Since the industry represents over
15% of total revenues in Compustat, this premium in margins can significantly skew
the aggregate results for the economy at large. Finally, the finance industry is differ-
ent from the other industries in the type of exogenous factors that profoundly affect
it. Besides the common-to-all factors of customer demand and the overall health of
the economy, the finance industry responds uniquely to the Fed’s monetary policy,
which has been expansionary since the financial crisis of 2008 and through 2019. For
all these reasons, I have excluded 2-digit NAICS code 52 from my analysis.

The summary statistics of the core variables are displayed in Table 1.

3 Elasticity of Scale

To estimate the elasticity of scale, I assume a Cobb-Douglas production function with
two inputs, variable input V and capital input K: Y = AKβkVβv , where A is a Hicks-
neutral technology, βk is the output elasticity of the capital input and βv is the output
elasticity of the variable input. The elasticity of scale is then measured by the sum of
the output elasticities βk + βv.

The Compustat data set contains data on revenues and costs, which are different
from the outputs and inputs required to estimate production functions. Klette and
Griliches (1996) found that if output prices are correlated with input choices, then us-
ing revenue and cost figures instead of quantities creates an omitted price bias, which
biases the estimates for output elasticities downward. To partially address this bias,
I follow De Loecker and Warzynski (2012) and Bartelsman et al. (2013) and deflate
revenues and costs using industry-level deflators. I use chain-type price indexes for
gross output by industry (2- or 3-digit level) published by the Bureau of Economic
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Analysis. Bond et al. (2021, Section 3) argue that using industry-level deflators is not
an adequate solution to the omitted price bias in the case of market power. However,
a market equilibrium with a single market price and heterogeneous market power
can be arrived at via a Cournot or a Dixit-Stiglitz models of competition that incor-
porate asymmetric cost structures (Frank Jr, 1965; Montagna, 1995; Okuguchi, 1973;
Uchiyama, 2018). I therefore assume that the firms in an industry charge the same
price, in which case deflating revenues and costs by industry-level deflators allows
me to arrive at inputs and outputs necessary for estimating the production functions.
Even if the assumption of a single market price does not hold perfectly, Klette and
Griliches (1996) expect the omitted price bias to lead to the underestimation of the
value of output elasticities, so the evidence of increasing returns shown in section 4
would be stronger if data on prices were available.

I use the sum of deflated COGS and SG&A as a measure of variable inputs and
deflated PPE multiplied by the estimated user cost of capital as capital inputs. SG&A
contain such expenses as marketing, office administration, human resources, and
utilities, and there is debate about how to treat this input. One option is to treat
SG&A as overhead independent of the production output (De Loecker et al., 2020).
A second option is to treat it as a separate input fundamentally different from the
variable and capital inputs. I choose a third option, which is to treat SG&A as a
variable input as the expenses in SG&A do fluctuate with the output a firm produces.
A firm needs more human resources if it has more employees, it will spend more on
marketing if it expands output to enter new markets, and it will have higher utility
bills to produce more output and have more employees.

There is another compelling reason to include SG&A in the variable input. It
has been recorded by multiple authors (De Loecker et al., 2020; Traina, 2018) that
the proportion of cost of goods sold in total costs of the firm has been falling and
the proportion of selling, general and administrative costs has been rising. One ex-
planation for this trend is the growing importance of marketing and management
expenses, which are included in SG&A (Karabarbounis and Neiman, 2019). Traina
(2018), conversely, hypothesizes that costs have been shifting from COGS into SG&A
over time. To expand on Traina (2018)’s logic, I suggest considering the incentives
for firms to re-code their existing costs under a different category. A perfunctory
search of SEC’s correspondence with firms filing their quarterly and annual reports
reveals that firms sometimes justify a shift of costs from COGS into SG&A by mak-
ing themselves comparable to competitors. Examples are Rite Aid correspondence
with the SEC (2006) and McCormick’s correspondence with the SEC (2007). Such
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justification has little to do with the economic distinction between variable and fixed
costs. Additionally, since gross margin is a metric of interest to many investors, firms
may find it in their interest to make their gross margin look as high as possible by
moving costs formerly categorized as COGS into SG&A (Fan and Liu, 2017). Thus,
not including SG&A in variable costs will generate a bias and an inconsistency be-
tween time periods, since the classification of costs between the COGS and SG&A
can change over time due to purely accounting reasons and not due to changes in
production processes.

To run the OP and ACF processes on Compustat data I must solve the challenge
of the low number of observations in some years for smaller industries. Compustat
has data on individual firms by year, which enables accounting for both the het-
erogeneity between industries and the changes that production processes undergo
over time. However, with some industries having a small number of publicly traded
firms (e.g., 17 firms in the 2-digit NAICS industry 11: agriculture, forestry, fishing,
and hunting in 2018), running empirical models by industry by year does not always
produce meaningful results. I address this problem by looking instead at five-year
rolling periods. Thus, I estimate elasticity of scale in period 1980 to 1984, then in
period 1981 to 1985, and so on. This way, the number of observations I have for each
statistical test is not the number of firms in any given year but roughly five times that
number. Besides supplying more observations, this approach has good economic in-
tuition as it allows me to examine a longer-term horizon in which a firm is expected
to recoup much of its initial capital investment and reinvest in new capital purchases
or upgrades. Using rolling periods has the added benefit of smoothing out the trend
line making it easier to interpret.

Data within five-year rolling periods are panel data. To avoid biased results, I
need to control for fixed effects. It is easy to control for year fixed effects. It is harder
to do the same for firms, because including firm fixed effects would negate the in-
tended data advantage of five-year rolling periods. I employ an imperfect solution
to this problem by controlling for sub-industry, which I designate as a 3-digit NAICS
industry. There are five sub-industries per industry on average, with the number of
sub-industries ranging from one in utilities to ten in information services.

3.1 Ordinary Least Squares

Estimating the production function using the naive OLS suffers from simultaneity
and selection biases (Marschak and Andrews, 1944). However, it may be instruc-
tive to apply OLS to the existing data to see how much and in what direction im-
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provements to the estimation method can change the results. Using a simple Cobb-
Douglas production function, I evaluate a separate regression for each five-year
rolling period (36 periods) and for each industry (21 industries). The regressions
are of the form

yit = β0 + βkkit + βvvit + yeart + subj + uit, (1)

where lower-case letters denote logs of Yit for output, Kit for capital, and Vit for
variable inputs, β0 is a constant term, yeart is year fixed effects, subj is sub-industry
fixed effects, and uit is the error term. The coefficients on variable and capital inputs,
βv and βk, are specific to the industry and the five-year rolling period. I sum them to
arrive at the elasticity of scale per period per industry.

3.2 Syverson’s Method

In his 2004 paper, Syverson uses a modified version of the OLS regression. He as-
sumes a Cobb-Douglas production function of the form

Y = A(KβkV1−βk)γ, (2)

where γ is the elasticity of scale. This formulation assumes that for a cost-minimizing
firm with a Cobb-Douglas production function, output elasticities of separate inputs
are proportional to the shares of their respective costs in total costs. Since the expo-
nents inside the parentheses in equation (2) add up to one, βk can be calculated for

every observation in the data set as
Kit

Kit + Vit
. Converting the production function

into logs creates a linear function that can be estimated via linear regression

yit = β0 + γinputit + yeart + subj + uit, (3)

where inputit = ln (Kβk
it V1−βk

it ).
A distinct advantage of this method of estimating returns to scale over OLS is

that it allows for heterogeneity in the exponents on inputs in the production func-
tion of individual firms. Allowing heterogeneity in input-output elasticities recog-
nizes that even within the same industry firms may use different technologies and
combinations of inputs to produce equivalent outputs. However, allowing hetero-
geneity comes at a price of the restrictive condition that output elasticities of capital
and variable inputs are in direct proportion to their shares in total costs, which is a
strong assumption.

Another advantage of Syverson’s formulation is that standard errors are easy to
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estimate for the elasticity of scale. In section 3.4, I discuss how I estimate standard
errors in the approach where elasticities of variable and capital inputs are estimated
separately.

3.3 Olley-Pakes Method

The two biases in the OLS estimation of a firm’s production function are simultane-
ity and selection (Marschak and Andrews, 1944). The simultaneity bias has to do
with the fact that firms choose the capital and variable inputs based on the informa-
tion available to them at the time. If the firm faces a positive productivity shock, it
selects to invest in more inputs. The naive OLS estimation of the production func-
tion does not account for the unobserved (to the econometrician) productivity shock.
The productivity shock is therefore left in the error term biasing the coefficients on
inputs. The selection bias results from neglecting to account for the fact that firms
may respond to a negative productivity shock by exiting the market altogether.

Olley and Pakes (1996) devise a method to resolve these biases. Assuming Cobb-
Douglas technology and taking logs results in equation (1), where uit is the error term
that contains the productivity shock ωit. The OP methodology assumes that variable
inputs are not dynamic and get chosen at time t. Unlike variable inputs, capital is
a dynamic input and gets chosen at time t − 1. When a positive productivity shock
is perceived by the firm, the firm reacts to that shock by investing in more capital.
Thus, capital investment is a function of the productivity shock and can be assumed
to be positive and strictly increasing: invt(ωit,kit). Inverting the investment function
generates a function for the productivity shock

ωit = ht(invit,kit). (4)

Subscript t in ht allows for functional heterogeneity in different periods but as-
sumes the same functional form for productivity for all firms within an industry.
Pulling the productivity shock out of the error term of the production function (1)
and substituting (4) for the productivity shock results in

yit = β0 + βvvit + βkkit + ht(invit,kit) + yeart + subj + eit, (5)

where eit is an unbiased error term. We can combine terms with capital and invest-
ment into a composite term ϕit = βkkit + ht(invit,kit) resulting in

yit = β0 + βvvit + ϕit + yeart + subj + eit. (6)
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Equation (6) can be estimated using OLS and approximating ϕit with a second-
order polynomial series in capital and investment. This step provides an estimate
of output elasticity of variable input, βv. The coefficient βv is unbiased because the
error term no longer contains the productivity shock and thus is no longer correlated
with the explanatory variables.

The next assumption in OP is that productivity follows a first-order Markov pro-
cess. Productivity also depends on the probability of exit. These premises result in
the following expression for the evolution of productivity shocks:

ωit = gt(ωit−1, Pit) + εit, (7)

where g(·) is an unknown function of the productivity shock in the previous period
and the probability of exit in this period, and εit is an innovation term. Exit in turn
is determined by capital, investment, and the productivity shock in the previous
period: Pit(invit−1,kit−1,ωit−1). From (4), it follows that ωit−1 = ht−1(invit−1,kit−1).
Thus, the probability of exit can be expressed as an unknown function p(·) of invest-
ment and capital in the previous period,

Pit = pt(invit−1,kit−1), (8)

which I estimate via a probit regression using a second-order polynomial of invest-
ment and capital in the previous period.

Now I have all the necessary components to find the coefficient on capital βk. I
start with equation (6) and use the predicted impact of the variable input to isolate
the impact of capital and the productivity shock, so the dependent variable is now
yit − β̂vvit. From the definition of ϕit, it follows that ϕit−1 = βkkit−1 + ht−1(invit−1,kit−1).
Results from the same first-stage regression (6) provide predicted values of ϕ̂it−1,
while results from the probit regression based on equation (8) provide predicted val-
ues of P̂it. The coefficient on capital, βk, can be recovered by fitting the following
equation by nonlinear least squares:

yit − β̂vvit = β0 + βkkit + gt(ϕ̂it−1 − βkkit−1, P̂it) + yeart + subj + εit + eit, (9)

where I estimate the unknown function gt(ϕ̂it−1 − βkkit−1, P̂it) using a second-order
polynomial of ϕ̂it−1 − βkkit−1 and P̂it.
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3.4 Ackerberg-Caves-Frazer Method

Ackerberg et al. (2015) rectify a potential weakness in the Olley and Pakes (1996)
methodology, namely the assumption that the variable input is non-dynamic. If
that assumption is violated, then the OP estimation has a functional dependence
problem and the estimator of βv is not consistent. Relaxing the assumption of the
non-dynamic nature of variable inputs makes it impossible to estimate βv in the first
stage because now productivity is a function of both capital and variable inputs,

ωit = ht(invit,vit,kit), (10)

which results in the production function

yit = β0 + βvvit + βkkit + ht(invit,vit,kit) + yeart + subj + eit. (11)

Now ϕit is defined as ϕit = βvvit + βkkit + ht(invit,vit,kit), rendering the following
expression for the production function:

yit = β0 + ϕit + yeart + subj + eit, (12)

which I estimate using a second-order polynomial of the variable input, capital, and
investment. The predicted values ϕ̂it−1 are used in the second stage in the expression
of productivity

ωit−1 = ht−1(invit−1,vit−1,kit−1) = ϕ̂it−1 − βvvit−1 − βkkit−1. (13)

Since the ACF methodology does not estimate βv in the first stage, it uses the
generalized method of moments to estimate all production function parameters in
the second stage. Thus, I arrive at the following second stage conditional moment:

E
[
εit + eit|ωit−1

]
= E

[
yit − β0 − βvvit − βkkit

−gt
(
ϕ̂it−1 − βvvit−1 − βkkit−1, P̂it

)
− yeart − subj|ωit−1

]
= 0. (14)

Transforming this conditional moment into unconditional moments for estima-
tion and assuming that variable inputs are chosen at time t − 1, I choose the set
of the following second-stage moment conditions to estimate the parameters of the
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production function, β0, βv, βk, and g:

E

yit − β0 − βvvit − βkkit

− gt(ϕ̂it−1 − βvvit−1 − βkkit−1, P̂it)− yeart − subj

⊗



vit

kit

P̂it

ϕ̂it−1

yeart

subj




= 0. (15)

One of the challenges with estimating the elasticity of scale by adding up the
variable and capital input elasticities is the estimation of standard errors to evaluate
the statistical significance of the findings. The ACF method allows for a simple solu-
tion to this challenge because it estimates the coefficients on the variable and the cap-
ital inputs simultaneously. I use bootstrap standard errors for the GMM procedure.
In addition to the standard errors, I retrieve the covariances between the estimates
of βk and βv, which in turn allows me to estimate the standard errors of the elasticity
of scale following the conventional approach for calculating the standard error of a
sum of two estimates.

4 Estimation Results

The estimates I obtain from the methods described in section 3 are by industry and
by period. To aggregate them into economy-wide estimates, I use industry shares of
total period sales as weights.

Figure 2 shows returns to scale over time using the four estimation approaches.
The labels on the horizontal axes mark the first year of the five-year rolling period,
so a data point marked 1990 is the elasticity of scale estimated for the period 1990
to 1994. Estimates using the OLS and Syverson’s methods contain the most bias.
Syverson’s method forces the output elasticities of capital and variable costs to be
proportional to their cost shares. OLS trendline matches Syverson’s method trend-
line almost perfectly until around 1995 when the two lines diverge. This is an inter-
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esting observation in itself, marking a potential shift in the role of capital vs. variable
inputs, such as labor, in production, which coincides with the period of information
technology innovations of the late 1990s and early 2000s.

The Olley-Pakes and Ackerberg-Caves-Frazer methods reduce selection and si-
multaneity biases. In terms of the trendline, however, the OP method produces es-
timates higher than those generated using OLS. Between the OP and ACF methods,
ACF is flatter since the early 2000s and appears to be more affected by the 2008 reces-
sion. Henceforth, I will focus on the ACF estimates for three reasons. First, it allows
for the calculation of standard errors, which is an important advantage in evaluating
the significance of the empirical results. Second, the ACF method estimates the low-
est elasticity of scale of the four methods used, which means I will be using the most
conservative estimates. Third, the ACF method estimates production functions un-
der the assumption that capital and non-capital inputs are similar in their dynamic
nature, an assumption I discuss in detail in section 5.

The biggest takeaway from Figure 2 is that the elasticity of scale is above 1 and
has been rising since the 1980s. It experienced a steep increase in the 1990s, which
coincides with the beginning of the Internet revolution. The latest sharp increase
happened as the country was recovering from the 2008 financial crisis. It can be
explained by the fact that the crisis is likely to have disproportionately affected busi-
nesses with outmoded technologies and older processes, creating a type of selection
mechanism for firms that could more effectively utilize the economies of scale. Using
the Ackerberg-Caves-Frazer method results in the estimate of the aggregate elasticity
of scale for the U.S. economy in the five-year period 2015-2019 of 1.1.

This estimate is higher than that found by De Loecker et al. (2020), who although
focusing on the output elasticity of the variable input, do mention that the average
elasticity of scale according to their estimates has increased from 1.03 to 1.08. How-
ever, the authors do not delve into how they arrive at these estimates, nor do they
draw industry or macroeconomic implications from them.

Figure 3 shows the 95% confidence interval for the estimate of the elasticity of
scale using the ACF method. The graph shows that the estimate is well outside of
the null hypothesis of being equal to one.

It is instructive next to look at industry-specific elasticities to see which indus-
tries drive the aggregate number. Figure 4 shows the elasticity of scale for the 21
U.S. 2-digit NAICS industries (excluding finance). Panel 4a shows the top seven in-
dustries by total revenues. Manufacturing of wood and chemicals (NAICS code 32)
stands out the most with the highest returns to scale, reaching as high as 1.18 at its
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peak. The information industry (NAICS code 51) displays a pattern shown earlier
with an expected steep increase in scale elasticity in the 1990s. Exploring the un-
derlying technological and organizational reasons for the upward trends in the scale
elasticity graphs by industry is outside the scope of this study. Yet, the graph sug-
gests that although a few industries such as retail trade of durables (NAICS code
44) or wholesale trade (NAICS code 42) are hovering close to one, others show an
upward trajectory distinct from one.

The top seven industries by revenues also have a relatively large number of firms
compared to the smaller industries in panels 4b and 4c, so their trend lines are much
less volatile. In panel 4b, for example, warehousing (NAICS code 49) is characterized
by a small number of firms with a market share distribution highly skewed to the
left, dominated by three large firms: UPS, USPS, and FedEx. Any changes within
any of the top firms will have an effect on the elasticities estimated for the industry.
For example, FedEx restructuring in 2000 accounts for much of the volatility in the
industry trend during that period.

Industries in panel 4c show the highest volatility, and such volatility precludes
me from drawing robust conclusions about the elasticity of scale for these industries.
Yet, since the aggregate elasticity is calculated using the share of industry revenue
in the economy as weights, the bottom industries have little effect on the aggregate
estimate as the share of the revenue for the 7 bottom industries in the data in 2019
was 3%.

5 Markup Calculation

In the following sections I will use the elasticity of scale I estimated previously to
calculate markups for the U.S. industries and for the U.S. economy as a whole over
the last four decades. In a paper that received a lot of attention due to its claim of
high and increasing markups in the U.S., De Loecker et al. (2020) use the following
formula for the markup:

µ = eV
PQ

PVV
, (16)

where Q is output, P is the price of output, V is the variable input, PV is the price of
the variable input, and eV is the output elasticity of the variable input. Expression
(16) is derived from the cost minimization Lagrangian of the form

L(V,K,λ) = PVV + rK − λ(Q(Ω,V,K)− Q), (17)
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where K is capital, r is the user cost of capital, Q(·) is the production function, Ω
is productivity, and Q is the target output. In this formulation, λ is effectively the
marginal cost. The first-order condition with respect to V results in

1
λ
=

1
PV

∂Q(·)
∂V

, (18)

which simplifies to equation (16) once both sides are multiplied by P and the right
side is multiplied by V

Q × Q
V .

Economics textbooks, such as Varian (1992), Krugman and Wells (2018), Perloff
(2022), feature a different formula for markup,

µ = escale
PQ
TC

, (19)

where escale is the elasticity of scale and TC stands for “total costs.” Varian (1992)
shows that the elasticity of scale is the percent change in output to the percent change
in all inputs and is equal to AC

MC (average cost divided by marginal cost). Syverson
(2019) derives the same relationship between the markup and the elasticity of scale
by simple algebraic steps

µ =
P

MC
=

P
MC

AC
AC

Q
Q

=
AC
MC

PQ
AC × Q

= escale
PQ
TC

. (20)

The difference between the two formulas for the markup lies in the short-term vs.
long-term view of the firm. In the short term, the firm has fixed and variable inputs,
and it can only change the variable inputs. Hence, in the cost-minimization problem
in De Loecker et al. (2020), the first-order condition is taken with respect to variable
and not capital inputs, because capital inputs are considered fixed. However, in the
long term, the firm can vary all inputs, and this assumption would allow taking a
first-order condition with respect to capital, which results in

1
λ
=

1
r

∂Q(·)
∂K

. (21)

Together with equation (18), the long-term cost minimization requires that an ad-
ditional dollar of the variable cost cause the same change in output as an additional
dollar of capital cost. This means that there is an optimal proportion of expendi-
tures on variable and capital inputs for a cost-minimizing firm. It also follows that
the markup in the long-term view can be calculated using both variable and capital
inputs.

µ = eV
PQ

PVV
= eK

PQ
rK

. (22)
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Substituting eK = escale − eV and rK = TC − PVV and performing simple algebraic
manipulations, we arrive at the textbook formulation of markup shown in equation
(20):

eV
PQ

PVV
= (escale − eV)

PQ
TC − PVV

eV PQ(TC − PVV) = escalePQPVV − eV PQPVV

eV PQ TC = escalePQPVV

eV
PQ

PVV
= escale

PQ
TC

= µ. (23)

I see three lines of argumentation along which to debate the use of the short-
term or the long-term formula for markups: time horizon, adjustment costs for cap-
ital inputs, and classification of fixed and variable inputs. The argument in favor of
the short-term approach would highlight the fact that firms in a competitive mar-
ket must be nimble and respond to market conditions relatively fast. The counter-
argument would stress the fact that firms plan ahead, develop long-term strategies,
and make investments for the future. Both points have merit, but I advocate for the
long-term approach because the issues of industry concentration and market power
focus on large firms, which have the luxury of long-term strategic planning, as op-
posed to small businesses, which are at least anecdotally more driven by short-term
goals of survival. A large firm has the capital to make long-term investments and
the operating funds to lower prices to drive out competition. At any given point,
markups of a large firm may be low as part of a strategic decision to win mar-
ket share, with a longer-term result of more market power and higher prices and
markups. Therefore, it appears more insightful to look at long-term markups.

The second line of argumentation deals with adjustment costs of capital inputs.
The reason the variable inputs alone are used for the markup calculations in eco-
nomics papers such as De Loecker et al. (2020) is because it is assumed that adjust-
ment costs for capital are positive while adjustment costs for variable costs, specifi-
cally labor, are zero. Positive adjustment costs would mean that the markup needs to
be higher to cover them. If adjustment costs are not accounted for in the derivation of
the markup, the markup estimate will be biased upward. Since data on adjustment
costs are difficult to come by, using the markup calculation with just the variable
input as opposed to the markup calculation with just the capital input seems like
a straightforward choice. However, the concern over adjustment costs vanishes al-
together when I employ the long-term markup formula, because it uses total costs,
and total costs subsume adjustment costs.
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The third line of argumentation concerns the classification of fixed and variable
costs using the firms’ financial statements. The lines between variable and fixed costs
become increasingly blurry. Variable costs are supposed to change with the output
quantity and be characterized by costless and instantaneous adjustment. However,
finding and onboarding new employees is far from costless. Firms are not required to
disclose their onboarding costs, but when third-party recruiters are involved, hiring
firms frequently pay such recruiters as much as 20% of a year’s salary for a new
hire. Additionally, the amount of human capital investments firms make into their
employees has been growing (Cascio, 2019). In certain sectors, such as education
for example, where the employer has limited ability to fire personnel, labor acquires
characteristics of a fixed cost. Eliminating this cost requires a concerted effort of a
layoff not much different in economic terms from the effort to decommission unused
capital.

Fixed costs are supposed to be stable within a range of output quantities and
be characterized by positive adjustment costs. Traditionally, IT equipment such as
servers and storage arrays have been considered fixed costs. Today, firms can out-
source such costs to providers such as Amazon or Microsoft and increase or decrease
their infrastructure on demand, bringing IT capacity expenditures much closer to
variable costs. When a firm does own its server infrastructure, much of it gets fully
replaced on a three- to five-year schedule – a significant shift from the theoretical
concept of long-lasting capital investments with multi-decade useful lives.

The three relevant cost categories in financial statements are COGS, SG&A, and
capital. I discussed in section 3 why not including SG&A in the variable costs cre-
ates bias and inconsistency over time. A similar argument may be applied to capital.
Firms frequently change their strategies with regard to capital. When they own office
buildings, they have depreciation expense and potentially interest expense. When
they rent, they have rent expense, which is recorded in SG&A. By including SG&A
and excluding capital-related expenses, one would introduce bias into the calcula-
tion of markup. If the output elasticity of the chosen input can reflect the differences
between firms that own real estate vs. rent it, then no issue arises, but since elastic-
ities are calculated by industry, artificial differences in markups will arise. With the
same elasticity within the industry, the markup calculation excluding capital-related
expenses will automatically estimate a higher markup for firms that own real estate
than firms that lease real estate, because leasing firms will have a higher SG&A.

The longer-term planning horizon of large firms, the blurry lines between vari-
able and fixed costs, and the bypassing of the adjustment costs calculation challenge

18



lead me to choose the long-term markup calculation (µ = escale
PQ
TC ) over the short-

term markup calculation (µ = eV
PQ

PVV ).
Bond et al. (2021, Section 2) show that when revenue is used instead of output

quantity, the markup calculation using revenue elasticities does not carry any infor-
mation about the true markup. I partially shield my results from this criticism by
deflating the revenues by 2- and 3-digit industry deflators. Thus, I implicitly treat
the elasticity estimates I derived as output elasticities in the markup calculations. Al-
though my markup estimates are potentially subject to some degree of the omitted
price bias, the main argument with respect to markups is that my estimates are sub-
stantially lower than those derived by De Loecker et al. (2020), subject to the same
bias, and propagated in much of recent literature (De Ridder, 2019; Döpper et al.,
2022; Liu et al., 2022). My goal here is to focus on a key methodological difference
between our approaches, unrelated to the omitted price bias.

6 Markup Results

I estimate the elasticity of scale by period by industry, while the sales-to-cost ratio
( PQ

TC ) is available by year by firm. The sales-to-cost ratio is easy to calculate because
most of the necessary values are directly observable in the data, with the excep-
tion of the user cost of capital, which has been estimated. Thus, I can calculate the
markup for each individual firm for each year. To arrive at the aggregate markup for
the economy while maintaining consistency with the five-year rolling periods used
throughout the paper, I multiply the individual firm-year-specific markups by the
share of the firm-year sales in the total sales across all firms in the five-year rolling
period. Figure 5 shows the estimate of the aggregate U.S. markup over time together
with the two aggregate components that make up the markup: the elasticity of scale
(ACF method) and the sales-to-cost ratio. The markup has grown from 1.03 in the
1980s to 1.17 in the last five-year period of 2015-2019, peaking at 1.20. These figures
stand in stark contrast to those arrived at by De Loecker et al. (2020), and the trend
line has been going down since 2010.

The graph shows that both components of the markup equation contribute to
the upward trajectory of markups over time. The sales-to-cost ratio appears to have
responded to the Internet revolution with a characteristic jump, but it appears to lag
the elasticity of scale, which is logical given price-stickiness in the economy. Overall,
the sales-to-cost ratio appears to be a more volatile component of the markup.

Figure 6 shows the evolution of markups for individual industries, again broken
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into three groups of seven industries sorted by revenues. The information sector
(NAICS code 51) in Panel 6a is the leader in markups among the top seven indus-
tries. A rich literature on the rising market power and concentration of the informa-
tion industry includes papers such as Decker et al. (2014) and Shapiro (2019) among
others.

The markup of the utilities industry (NAICS code 22) stands out as it is below
one much of the time, but it is not surprising given the regulated character of the
utilities industry. On the one hand, regulation pushes the prices down, but on the
other hand, the government can reduce the cost of capital for utility companies by
providing grants or low-interest loans. Since I applied the same user cost of capital
to all industries to avoid making additional assumptions, the markup graph for the
utilities industry is likely biased downward.

The mining industry (NAICS code 21) in Panel 6b includes oil and gas extrac-
tion so price volatility of oil and gas on the world market can drive the volatility of
markups for this industry. Thus, the inverse U-shape of the graph in the period from
the mid-1990s to the recent decade reflects the price behavior of oil and gas during
the same time period. The markups for educational services (NAICS code 61) in
Panel 6c likely reflect the increased demand for distant-learning services, while the
trend line of the construction industry’s markup (NAICS code 23) reflects the boom
and bust in the housing market preceding and following the 2008 financial crisis.

The industries with the lowest markups (apart from utilities discussed above)
are transportation and warehousing, retail and wholesale trade, and accommodation
and food industries.

Finally, it is interesting to test the notion that markups calculated inclusive of
the capital input would be biased upward compared to markups calculated with-
out the capital input due to the adjustment costs of capital. Figure 7 shows the
aggregate markups calculated using the two approaches. It may be surprising to
see the markup using total costs to be lower than the markup using only COGS and
SG&A. However, as discussed earlier, both capital and other inputs require adjust-
ment costs. Not including capital costs in the output elasticity and the sales-to-cost
ratio creates other sources of bias that outweigh the difference in adjustment costs
between capital and the other inputs. If one prefers the calculation without the cap-
ital costs, one also must admit that the change in markups between the 1980s and
today has not been dramatic (from 1.13 to 1.23).
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7 Conclusion

There is a growing consensus among economists that the U.S. economy has been
exhibiting increasing industry concentration across multiple industries. This trend
is frequently seen as having a negative effect on the economy in terms of competi-
tiveness, productivity, innovation, and labor share of income. As concentration in-
creases, markups are expected to grow, which drives the labor share down. This
paper evaluates recent calculations of markups and proposes a new explanation for
industry concentration, namely increasing returns to scale. I estimate the elasticity
of scale for different U.S. industries over the period 1980-2019 using data on pub-
licly traded companies. Four estimation methods are employed: simple OLS, Syver-
son’s method (Syverson, 2004), Olley and Pakes method (Olley and Pakes, 1996),
and Ackerberg, Caves, and Frazer method (Ackerberg et al., 2015). I find that the
aggregate elasticity of scale is above one and has been rising (from 1.02 to 1.10 in the
period from 1980 to 2019). Increasing returns to scale in turn can explain, at least in
part, the rising industry concentration and increases in markups for broad sectors of
the economy.

Increasing returns to scale provide an explanation for a finding reported by
De Loecker et al. (2020), whereby higher markups have shifted to the bigger firms
over the last few decades. The authors claim that this shift is due to higher market
power. They likely interpret it that way because the output elasticity of variable
input they estimate and use in their markup calculation is either flat or going down.
But the conclusion is quite different when we account for the increasing returns to
scale instead. The markup is calculated as elasticity multiplied by the sales-to-cost
ratio, but the elasticity both in this paper and in De Loecker et al. (2020) is assumed
to be the same for all the firms in the industry for a given period. Thus, comparing
markups between firms within an industry amounts to comparing their sales-to-
cost ratios. If we allow for the increasing returns to scale, then the sales-to-cost ratio
would automatically be higher for the bigger firms, because their average costs are
lower due to their size. The additional reward reaped by bigger firms in the form of
higher markups is the consequence and not the cause of the market structure.

My analysis shows that the aggregate markup has been around 1.2 over the last
decade, which is in stark contrast to estimates of 1.6 generated by recent literature
(De Loecker et al., 2020). The reason for the disparity in markup estimates stems
from differences in methodological approach to markup estimation and the classifi-
cation of accounting data into economic categories of fixed and variable costs. The
present research uses total costs as opposed to COGS or COGS+SG&A alone in cal-
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culating scale elasticities, which in turn are inputs in the calculation of markups. The
U.S. Generally Accepted Accounting Principles require publicly traded companies to
report their financial results in a consistent and transparent manner. However, for
the reporting principles to be adhered to by firms from vastly different industries
with vastly different revenue and cost structures, they must be general enough that
much variation is inevitably present. This variation is most pronounced between
firms from different industries but likely exists between firms within the same indus-
try as well. The cross-sectional variation in reporting is exacerbated by time-varying
changes in the Principles themselves as well as how they are applied. To focus on
one category of costs and ignore the others in running aggregate estimation proce-
dures is therefore prone to errors even if the procedure itself is valid. The current
research attempts to safeguard against the errors resulting from the data reporting
by focusing on total costs, a category far less susceptible to reporting inconsistency
than any one sub-category within the total costs.

Increasing returns to scale have far-reaching implications for policymaking. The
implications of Autor et al. (2020) model, whereby the randomly drawn total factor
productivity zi is the cause for the firm’s cost advantage and subsequent growth,
are different from the implications of the increasing returns to scale in important re-
spects. Although both theories suggest that large firms tend to be more productive
than small firms, the theory where productivity advantage stems from the randomly
drawn TFP presupposes that if the same TFP was available to all firms, more and
stronger competition could be achieved. Conversely, the theory where productivity
advantage comes from size, breaking up a large firm into smaller competing firms
would have the effect of destroying productivity. Understanding which effect dom-
inates, the total factor productivity or returns to scale, is crucial for policy implica-
tions of growing industry concentration.

Production technology with increasing returns is by itself a wealth-increasing
phenomenon: as inputs grow, the output grows at a faster rate. An individual firm
faced with scale elasticity above one has the incentive to get larger, and the limits to
the resulting tendency toward concentration are set by the consumers’ preference for
variety (Dixit and Stiglitz, 1977). The firm will still face competition from producers
of substitute products or from firms that happen to experience a higher productiv-
ity shock in a given year. Antitrust policies guided by the idea that breaking up
large firms should increase and strengthen competition and therefore be efficiency
enhancing must face the reality that large size may be an important source of pro-
ductivity for a firm. Large firms do not get larger only due to the luck of the draw of
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the total factor productivity, as is often argued, but also because their productivity
grows with size.

With regard to international trade, the existence of increasing returns challenges
some of the standard arguments for market efficiency and suggests new defenses
for old policies (Hudson, 2010). The infant industry argument for protectionism, for
example, may have greater force in a world of increasing returns (Palley, 2008; Gi-
ammetti et al., 2022). However, as Krugman (1987, 1993, 1997) successfully argued, it
is unrealistic to expect that in today’s globally interdependent world, national gov-
ernments can engage in strategic competition without creating unforeseen negative
consequences.
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Krugman, P. R. (1987). Is free trade passé? Journal of Economic Perspectives, 1(2):131–
144.

Krugman, P. R. (1993). The narrow and broad arguments for free trade. American
Economic Review, 83(2):362–366.

Lawrence, R. Z. (2015). Recent declines in labor’s share in US income: A preliminary
neoclassical account. Working Paper No. 21296, National Bureau of Economic
Research.

Liu, E., Mian, A., and Sufi, A. (2022). Low interest rates, market power, and produc-
tivity growth. Econometrica, 90(1):193–221.

Marschak, J. and Andrews, W. H. (1944). Random simultaneous equations and the
theory of production. Econometrica, Journal of the Econometric Society, pages 143–
205.

Montagna, C. (1995). Monopolistic competition with firm-specific costs. Oxford Eco-
nomic Papers, 47(2):318–328.

Oberfield, E. and Raval, D. (2021). Micro data and macro technology. Econometrica,
89(2):703–732.

Okuguchi, K. (1973). Quasi-competitiveness and Cournot oligopoly. The Review of
Economic Studies, 40(1):145–148.

Olley, S. and Pakes, A. (1996). The dynamics of productivity in the telecommunica-
tions industry. Econometrica, 64:1263–1298.

Palley, T. I. (2008). Institutionalism and new trade theory: rethinking comparative
advantage and trade policy. Journal of Economic Issues, 42(1):195–208.

Pavcnik, N. (2002). Trade liberalization, exit, and productivity improvements: Evi-
dence from Chilean plants. The Review of economic studies, 69(1):245–276.

Perloff, J. M. (2022). Microeconomics. Pearson Education, Boston, 7th. edition.

Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political
Economy, 94(5):1002–1037.

Shapiro, C. (2019). Protecting competition in the American economy: Merger control,
tech titans, labor markets. Journal of Economic Perspectives, 33(3):69–93.

27



Smith, A. (1776). The Wealth of Nations, volume One. W. Strahan and T. Cadell,
London.

Solow, R. M. (1957). Technical change and the aggregate production function. Review
of Economics and Statistics, pages 312–320.

Syverson, C. (2004). Market structure and productivity: A concrete example. Journal
of Political Economy, 112(6):1181–1222.

Syverson, C. (2019). Macroeconomics and market power: Context, implications, and
open questions. Journal of Economic Perspectives, 33(3):23–43.

Traina, J. (2018). Is aggregate market power increasing? Production trends using
financial statements. Working Paper No. 272, Stigler Center for the Study of the
Economy and the State.

Uchiyama, T. (2018). Quasi-competitiveness in the Cournot model with heteroge-
neous firms. Economics Letters, 165:62–64.

United States Securities and Exchange Commission (2006). Rite Aid Corporation:
Form 10-K for fiscal year ended February 26, 2005.

United States Securities and Exchange Commission (2007). Mccormick and Com-
pany, Incorporated: Form 10-K for fiscal year ended November 30, 2006.

Varian, H. R. (1992). Microeconomic Analysis, volume 3. Norton New York.

Verdoorn, P. J. (1949). On the factors determining the growth of labor productivity.
Italian Economic Papers, 2:59–68.

Young, A. (1928). Increasing returns and economic progress. The Economic Journal,
38:527–542.

28



Table 1: Summary statistics 1980-2019

Acronym Mean Median No. Obs

Sales SALE 2623015 144853 266732
Cost of goods sold COGS 1839702 88073 266732
Selling, general & admin. XSG&A 353950 17043 266732
Capital stock PPEGT 2662754 62840 266732

Notes: Thousands USD deflated using BEA’s Chain-Type Price Indexes for Gross Output
by Industry with base year 2012. The second column contains the Compustat acronym.

Figure 1: Number of firms in Compustat by year by industry

Note: The down and to the right order of the legend labels matches the bottom-
up order of the bar colors.
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Figure 2: Aggregate elasticity of scale estimates

(a)

(b)

Notes: Panel (a) shows the estimated aggregate elasticity of scale using the ACF
and OP methods; panel (b) shows the estimated aggregate elasticity of scale using
the OLS and Syverson’s methods. The labels on the horizontal axes mark the first
year of the five-year rolling period, so a data point marked 1990 is the elasticity
of scale estimated for the period 1990 to 1994.
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Figure 3: Aggregate elasticity of scale estimate using the ACF method with 95%
confidence interval

Note: The labels on the horizontal axes mark the first year of the five-year rolling
period, so a data point marked 1990 is the elasticity of scale estimated for the
period 1990 to 1994.
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Figure 4: Industry-specific elasticity of scale estimates

(a)

(b)

(c)
Notes: The figures show the estimated elasticities of scale using the ACF method by industry, with
Panel (a) focusing on the top 7 industries, Panel (b) the next 7 industries, and Panel (c) the bottom
7 industries by total revenues. The labels on the horizontal axes mark the first year of the five-year
rolling period, so a data point marked 1990 is the elasticity of scale estimated for the period 1990 to
1994.
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Figure 5: Decomposition of the aggregate markup estimates

Note: The labels on the horizontal axes mark the first year of the five-year rolling
period, so a data point marked 1990 is the elasticity of scale estimated for the
period 1990 to 1994.
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Figure 6: Industry-specific markup estimates

(a)

(b)

(c)
Notes: The figures show the estimated markups by industry, with Panel (a) focusing on the top 7
industries, Panel (b) the next 7 industries, and Panel (c) the bottom 7 industries by total revenues.
The labels on the horizontal axes mark the first year of the five-year rolling period, so a data point
marked 1990 is the elasticity of scale estimated for the period 1990 to 1994.
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Figure 7: Aggregate markup estimate using only variable inputs vs. all inputs

Note: The labels on the horizontal axes mark the first year of the five-year rolling
period, so a data point marked 1990 is the elasticity of scale estimated for the
period 1990 to 1994.
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